- Disktra's algorithm with D-ary Heap:
- Disktra's algorithm with Fibonacci Heap :
In practice thought, a D-ary Heap performs better than a Fibonacci heap in most cases. Also a D-ary -heap with D greater than 2 may perform better because it produces less cache misses and virtual memory page faults.
Here is my implementation (maybe later I'll add another post with some benchmarks):
Fibonacci Heap:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 | #ifndef INDEX_FIB_HEAP_FIB_HEAP_H #define INDEX_FIB_HEAP_FIB_HEAP_H #include <algorithm> #include <stdexcept> #include <functional> namespace mds { template<typename P, typename Func = std::less<P>> class index_fib_heap { struct node { unsigned index; P prty; unsigned degree = 0; bool mark = false; node* parent = nullptr; node* childs = nullptr; node* left = nullptr; node* right = nullptr; node(node* n) : prty(n->prty), index(n->index), degree(n->degree), mark(n->mark) { } node(unsigned pindex, const P& priority) : index(pindex), prty(priority) { } node(unsigned pindex, P&& priority) : index(pindex), prty(std::move(priority)) { } node* add_brother(node* n) { n->parent = parent; n->left = this; n->right = right; right->left = n; right = n; return this; } node* remove_self() { left->right = right; right->left = left; return this; } node* add_child(node* n) { if (childs == nullptr) { childs = n->to_single_list(); n->parent = this; } else { childs->add_brother(n); } n->mark = false; ++degree; return this; } node* to_single_list() { left = this; right = this; return this; } void destroy() { auto n = childs; for (auto i = 0u; i < degree; ++i) { auto next = n->right; n->destroy(); n = next; } delete this; } }; node* copy_node(node* n) { auto new_n = new node(n); index_table[n->index] = new_n; return new_n; } node* deep_copy(node* root) { auto copy = copy_node(root); if (root->childs == nullptr) { return copy; } auto n = root->childs->right; auto child_copy = deep_copy(root->childs) ->to_single_list(); copy->childs = child_copy; child_copy->parent = copy; for (auto i = 1u; i < root->degree; ++i) { child_copy->add_brother(deep_copy(n)); n = n->right; } return copy; } void consolidate() { unsigned bound = static_cast<unsigned>( std::log(N) / LOG_OF_GOLDEN) + 1; auto degree_array = new node*[bound](); for (auto n = min; root_size > 0; --root_size) { auto parent = n; auto d = parent->degree; n = n->right; while (degree_array[d] != nullptr) { auto child = degree_array[d]; if (cmp(child->prty, parent->prty)) { std::swap(child, parent); } parent->add_child(child->remove_self()); degree_array[d++] = nullptr; } degree_array[d] = parent; } auto d = 0u; while (degree_array[d++] == nullptr); min = degree_array[d - 1]->to_single_list(); for (; d < bound; ++d) { if (degree_array[d] != nullptr) { add_to_root(degree_array[d]); } } delete[] degree_array; ++root_size; } node* remove_min() { if (empty()) { throw std::underflow_error("underflow"); } auto deleted = min; add_childs_to_root(deleted); deleted->remove_self(); --root_size; if (deleted == deleted->right) { min = nullptr; } else { min = min->right; consolidate(); } --N; return deleted; } void add_to_root(node* n) { min->add_brother(n); if (cmp(n->prty, min->prty)) { min = n; } ++root_size; } void add_childs_to_root(node* n) { auto c = n->childs; auto d = n->degree; for (auto i = 0u; i < d; ++i) { auto next = c->right; add_to_root(c); c = next; } } template<typename PP> void decrease_priority(node *n, PP&& new_p) { if (cmp(n->prty, new_p)) { throw std::runtime_error("key is greater"); } n->prty = std::forward<PP>(new_p); auto p = n->parent; if (p != nullptr && cmp(n->prty, p->prty)) { cut(n, p); cascading_cut(p); } if (cmp(n->prty, min->prty)) { min = n; } } void cut(node* child, node* parent) { child->remove_self(); child->mark = false; --parent->degree; if (parent->degree == 0) { parent->childs = nullptr; } else if (parent->childs == child) { parent->childs = child->right; }
node* p = n->parent; cut(n, p); n = p; } n->mark = n->mark || n->parent; } void check_index(unsigned index) const { if (index >= max_size) { std::out_of_range("index out of range"); } } static constexpr double LOG_OF_GOLDEN = 0.4812118; unsigned max_size; node** index_table; node* min; unsigned N; unsigned root_size; Func cmp; public: index_fib_heap(unsigned pmax_size, Func pcmp) : max_size(pmax_size), index_table(new node*[pmax_size]()), min(nullptr), N(0), root_size(0), cmp(pcmp) { } index_fib_heap(unsigned pmax_size) : index_fib_heap(pmax_size, Func()) { } index_fib_heap(index_fib_heap<P, Func> && fib) noexcept : min(fib.min), N(fib.N), root_size(fib.root_size), cmp(fib.cmp), index_table(fib.index_table), max_size(fib.max_size) { fib.N = fib.max_size = fib.root_size = 0; fib.index_table = nullptr; fib.min = nullptr; } index_fib_heap(const index_fib_heap<P, Func> & fib) noexcept : N(fib.N), root_size(fib.root_size), cmp(fib.cmp), max_size(fib.max_size), index_table(new node*[fib.max_size]()) { if (fib.empty()) { return; } min = deep_copy(fib.min)->to_single_list(); auto n = fib.min->right; for (auto i = 1u; i < root_size; ++i) { min->add_brother(deep_copy(n)); n = n->right; } } ~index_fib_heap() { auto n = min; for (auto i = 0u; i < root_size; ++i) { auto next = n->right; n->destroy(); n = next; } delete[] index_table; } void pop() { auto min_node = remove_min(); index_table[min_node->index] = nullptr; delete min_node; } std::pair<unsigned, P> top() const { return { min->index, min->prty }; } template<typename PP> bool insert(unsigned index, PP&& prty) { check_index(index); auto &new_node = index_table[index]; if (new_node != nullptr) { return false; } new_node = new node(index, std::forward<PP>(prty)); if (min == nullptr) { min = new_node->to_single_list(); ++root_size; } else { add_to_root(new_node); } ++N; return true; } template<typename PP> void decrease(unsigned index, PP&& prty) { check_index(index); auto node = index_table[index]; if (node != nullptr) { decrease_priority(node, std::forward<PP>(prty)); } } bool empty() const { return min == nullptr; } unsigned size() const { return N; } bool contains(unsigned index) const { return index_table[index] != nullptr; } friend void swap(index_fib_heap<P, Func>& first, index_fib_heap<P, Func>& second) noexcept { using std::swap; swap(first.N, second.N); swap(first.max_size, second.max_size); swap(first.index_table, second.index_table); swap(first.min, second.min); swap(first.root_size, second.root_size); swap(first.cmp, second.cmp); } index_fib_heap<P, Func>& operator=(index_fib_heap<P, Func> other) noexcept { swap(*this, other); return *this; } }; } #endif //INDEX_FIB_HEAP_FIB_HEAP_H |
D-ary Heap
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | #ifndef D_HEAP_D_HEAP_H #define D_HEAP_D_HEAP_H #include <vector> #include <iostream> #include <algorithm> #include <climits> namespace mds { template<class T, class F = std::less<T>> class DHeap { const static std::size_t defualt_D = 4; public: DHeap(std::size_t d, std::size_t pmax_size) : DHeap(d, pmax_size, F()) { } DHeap(std::size_t d, std::size_t pmax_N, const F& func) : D(d), cmp(func), N(0), max_N(pmax_N), keys(new T[pmax_N]), key_pos(new std::size_t[pmax_N]), pq(new std::size_t[pmax_N]) { for (auto i = 0u; i < max_N; ++i) { key_pos[i] = SIZE_MAX; } } DHeap(std::size_t pmax_N, const F& func) : DHeap(defualt_D, pmax_N, func) { } DHeap(std::size_t pmax_N) : DHeap(pmax_N, F()) { } DHeap(DHeap<T, F> && heap) noexcept : cmp(heap.cmp), keys(heap.keys), key_pos(heap.key_pos), pq(heap.pq), D(heap.D), N(heap.N), max_N(heap.max_N) { heap.keys = nullptr; heap.key_pos = nullptr; heap.pq = nullptr; heap.N = heap.max_N = 0; } ~DHeap() { delete[] keys; delete[] key_pos; delete[] pq; } void pop() { if (empty()) { throw new std::underflow_error("underflow"); } exchange(0, --N); key_pos[pq[N]] = SIZE_MAX; heapify(0); } bool insert(std::size_t index, const T& element) { return genericInsert(index, element); } bool insert(std::size_t index, T&& element) { return genericInsert(index, std::move(element)); } void decrease(std::size_t index, const T& key) { decrease_template(index, key); } void decrease(std::size_t index, T&& key) { decrease_template(index, std::move(key)); } bool empty() const { return N == 0; } std::pair<unsigned, T> top() const { if (empty()) { throw new std::underflow_error("underflow"); } return { pq[0], keys[pq[0]] }; } private: F cmp; T *keys; std::size_t *key_pos; std::size_t *pq; std::size_t D; std::size_t N; std::size_t max_N; void heapify(std::size_t index) { std::size_t first = 0; while ((first = firstChild(index)) < N) { unsigned to = std::min(N, firstChild(index + 1)); unsigned min = find_min(first, to); if (!compare(min, index)) { break; } exchange(min, index); index = min; } } void swim(std::size_t index) { std::size_t p = 0; while (index > 0 && compare(index, p = parent(index))) { exchange(p, index); index = p; } } bool compare(std::size_t i, std::size_t j) const { return cmp(keys[pq[i]], keys[pq[j]]); } void exchange(std::size_t i, std::size_t j) { using std::swap; swap(key_pos[pq[i]], key_pos[pq[j]]); swap(pq[i], pq[j]); } unsigned firstChild(std::size_t index) const { return (D * index) + 1; } std::size_t parent(std::size_t index) const { return (index - 1) / D; } std::size_t find_min(std::size_t first, std::size_t to) const { auto min = first; for (auto i = first + 1; i < to; ++i) { min = compare(i, min) ? i : min; } return min; } template<typename U> bool genericInsert(std::size_t index, U&& element) { check(index); if (contains(index)) { return false; } keys[index] = std::forward<U>(element); key_pos[index] = N; pq[N] = index; swim(N++); return true; } template<typename TT> void decrease_template(std::size_t index, TT&& key) { check(index); if (cmp(keys[index], key)) { throw new std::invalid_argument("invalid argument"); } keys[index] = std::forward<TT>(key); swim(key_pos[index]); } template< typename E> friend std::ostream & operator<<(std::ostream &os, const DHeap<T, E>& p) { for (auto = 0u; i < p.N; ++i) { os << p.table[i] << ","; } return os; } void check(std::size_t index) { if (index >= max_N) { throw std::out_of_range("index out of range"); } } bool contains(std::size_t i) { return key_pos[i] != SIZE_MAX; } }; } #endif /*D_HEAP_D_HEAP_H*/ |
Graph:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | #ifndef GRAPH_GRAPH_H #define GRAPH_GRAPH_H #include <cstddef> #include <vector> namespace mds { template <typename W, typename V = std::size_t> class edge { V v; V w; W wght; public: edge(const V& pfrom, const V& pto, const W& pweight) : v(pfrom), w(pto), wght(pweight) { } edge(V&& pfrom, V&& pto, W&& pweight) : v(std::move(pfrom)), w(std::move(pto)), wght(std::move(pweight)) { } V from() const { return v; } V to() const { return w; } const W& weight() const { return wght; } friend std::ostream & operator<<(std::ostream &os, const edge<W, V>& e) { return os << e.from() << " --(" << e.weight() << ")--> " << e.to(); } }; template<typename W> class graph { public: using adj_structure = std::vector<edge<W>>; graph(std::size_t V) : adj_list(std::vector<adj_structure>(V, std::vector<edge<W>>())) { } graph(): graph(0) { } graph(graph<W>&& g) : edges(g.edges), adj_list(std::move(g.adj_list)) { g.adj_list.clear(); g.edges = 0; } graph(std::size_t V, std::initializer_list<edge<W>> list) : graph(V) { for (const auto &e : list) { add_edge(e); } } graph(const graph<W>& g) : adj_list(g.adj_list), edge(g.edges) { } void add_edge(const edge<W>& e) { check(e.from()); check(e.to()); adj_list[e.from()].push_back(e); ++edges; } void add_edge(edge<W>&& e) { check(e.from()); check(e.to()); adj_list[e.from()].push_back(std::move(e)); ++edges; } const adj_structure& adj(std::size_t v) const { return adj_list[v]; } std::size_t E() const { return edges; } std::size_t V() const { return adj_list.size(); } graph<W>& operator=(graph<W> other) { swap(*this, other); return *this; } friend void swap(graph<W>& first, graph<W>& second) noexcept { using std::swap; swap(first.adj_list, second.adj_list); swap(first.edges, second.edges); } private: std::vector<adj_structure> adj_list; std::size_t edges; void check(std::size_t v) const { if (v >= V()) { throw std::out_of_range("vertex out of range"); } } }; } #endif // GRAPH_GRAPH_H |
Dijkstra's algorithm:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | #ifndef DIJKSTRA_ALGORITHM_DIJKSTRA_ALGORITHM_H #define DIJKSTRA_ALGORITHM_DIJKSTRA_ALGORITHM_H #include "Graph.h" #include <limits> #include "index_fib_heap.h" #include <type_traits> #include <functional> #include <deque> #include <climits> namespace mds { struct identity { template<typename U> constexpr auto operator()(U&& v) const noexcept -> decltype(std::forward<U>(v)) { return std::forward<U>(v); } }; template<typename W, typename F = identity, typename IPQ = mds::index_fib_heap< typename std::remove_reference< decltype(F()(std::declval<W>())) >::type > > class dijkstra_algorithm { using Weight = typename std::remove_reference< decltype(F()(std::declval<W>())) >::type; F map_w; IPQ pq; const graph<W> *g; const edge<W> **edge_to; Weight *distances; std::pair<std::size_t, Weight> next() { if (pq.empty()) { return { SIZE_MAX, { } }; } auto min = pq.top(); pq.pop(); for (const auto &e : g->adj(min.first)) { relax(&e); } return min; } void relax(const edge<W>* edge) { auto to = edge->to(); auto new_d = distances[edge->from()] + map_w(edge->weight()); if (new_d < distances[to]) { distances[to] = new_d; edge_to[to] = edge; if (!pq.insert(to, new_d)) { pq.decrease(to, new_d); } } } void check(std::size_t v) const { if (g == nullptr || v >= g->V()) { throw std::out_of_range("vertex out of range"); } } public: dijkstra_algorithm(std::size_t source, const graph<W>* pg, F pmap_w, IPQ ppq) : g(pg), map_w(pmap_w), edge_to(new const edge<W>*[pg->V()]()), distances(new Weight[pg->V()]), pq(std::move(ppq)) { for (std::size_t i = 0; i < pg->V(); ++i) { distances[i] = std::numeric_limits<Weight>::max(); } pq.insert(source, distances[source] = { }); } dijkstra_algorithm(std::size_t source, const graph<W>* pg, F pmap_w) : dijkstra_algorithm(source, pg, pmap_w, { pg->V() }) { } dijkstra_algorithm(std::size_t source, const graph<W>* pg) : dijkstra_algorithm(source, pg, { }) { } dijkstra_algorithm(dijkstra_algorithm<W, F, IPQ> && dijkstra) noexcept : map_w(std::move(dijkstra.map_w)), pq(std::move(dijkstra.pq)), g(dijkstra.g), edge_to(dijkstra.edge_to), distances(dijkstra.distances) { dijkstra.g = nullptr; dijkstra.edge_to = nullptr; dijkstra.distances = nullptr; } dijkstra_algorithm(const dijkstra_algorithm<W, F, IPQ>& dijkstra) : map_w(dijkstra.map_w), pq(dijkstra.pq), g(dijkstra.g) { edge_to = new const edge<W>*[g->V()]; distances = new Weight[g->V()]; for (std::size_t i = 0; i < g->V(); ++i) { edge_to[i] = dijkstra.edge_to[i]; distances[i] = dijkstra.distances[i]; } } ~dijkstra_algorithm() { delete[] edge_to; delete[] distances; } Weight distance_to(std::size_t v) const { check(v); return distances[v]; } bool has_path(std::size_t v) const { return distance_to(v) < std::numeric_limits<Weight>::max(); } std::deque<const edge<W>*> path(std::size_t v) const { check(v); std::deque<const edge<W>*> path; auto e = edge_to[v]; while (e != nullptr) { path.push_front(e); e = edge_to[e->from()]; } return path; } friend void swap(dijkstra_algorithm<W, F, IPQ>& first, dijkstra_algorithm<W, F, IPQ>& second) noexcept { using std::swap; swap(first.map_w, second.map_w); swap(first.pq, second.pq); swap(first.g, second.g); swap(first.edge_to, second.edge_to); swap(first.distances, second.distances); } dijkstra_algorithm<W, F, IPQ>& operator=(dijkstra_algorithm<W, F, IPQ> other) noexcept { swap(*this, other); return *this; } class dijkstra_iterator : public std::iterator<std::forward_iterator_tag, std::remove_cv_t<std::size_t>, std::ptrdiff_t, std::size_t*, std::size_t& > { dijkstra_algorithm<W, F, IPQ>* dijkstra; std::pair<std::size_t, Weight> current; public: explicit dijkstra_iterator(dijkstra_algorithm<W, F, IPQ>* pdijkstra) : dijkstra(pdijkstra) { current = pdijkstra->next(); } explicit dijkstra_iterator(std::size_t pcurrent) : current({ pcurrent, { } }) { } dijkstra_iterator& operator++ () { current = dijkstra->next(); return *this; } dijkstra_iterator operator++ (int) { dijkstra_iterator tmp(*this); current = dijkstra->next(); return tmp; } bool operator == (const dijkstra_iterator& rhs) const { return current.first == rhs.current.first; } bool operator != (const dijkstra_iterator& rhs) const { return current.first != rhs.current.first; } const std::pair<std::size_t, Weight>& operator* () const { return current; } const std::pair<std::size_t, Weight>& operator-> () const { return current; } }; using iterator = dijkstra_iterator; iterator begin() { return iterator(this); } iterator end() { return iterator(SIZE_MAX); } }; } #endif //DIJKSTRA_ALGORITHM_DIJKSTRA_ALGORITHM_H |
No comments:
Post a Comment