Friday, September 18, 2015

Red Black Tree map implementation

So i basically reinvented the wheel for learning purposes. Here is my Red Black Tree based on a (2-3-4 node Tree).

C++ 11 code:


  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
/**
 * Rules of a red black tree (2-3-4 node implementation)
 *
 * 1. Every node is either red or black
 * 2. The root is always black
 * 3. Every leaf nil is black
 * 4. If a node is red, then both their children are black (Every red node has a black parent)
 * 5. For a node x all simple path from x to the leafs has the same number of black nodes not including x
 * (This is what makes it balance)
 *
 * */

#ifndef RBTREE_H_
#define RBTREE_H_
#include <functional>
#include <utility>
#include <iostream>
#include <stack>

namespace dts {

    template <typename K, typename D, typename Func = std::less<K>>
    class RBTree {
    public:


        RBTree();
        RBTree(Func);

        ~RBTree();

        bool add(const K&, const D&);
        bool add(K&&, const D&);
        bool add(const K&, D&&);
        bool add(K&&, D&&);

        bool remove(const K& key, D&);
        std::pair<K, D> get_min() const;
        std::pair<K, D> get_max() const;

        bool get(const K&, D&) const;

        template<typename Accion>
        void in_order_walk(Accion) const;

        unsigned cardinality() const;

        bool empty() const;

        //Test

        bool isRedBlackTree() const 
        {
            bool isRedBlack = true;
            blackH(root, isRedBlack);
            return assertPropery3(root) && isRedBlack && !root->isRed;
        }

    private:

        struct Node {
            D data;
            K key;
            bool isRed;

            Node *left;
            Node *rigth;
            Node *p;
        };

        Func cmp;
        unsigned size;
        Node *root;
        Node *nil;

        Node* find_node(const K&) const;
        void insert_move_up(Node *&x, Node* uncle);

        template <typename KK, typename DD>
        Node* BST_add(KK&& key, DD&& data);

        template <typename KK, typename DD>
        Node* BST_add_recursive(KK&& key, DD&& data, Node* p, Node*& node);

        void fixed_add(Node* x);
        void fixed_remove(Node* x);

        template <typename KK, typename DD>
        Node* create_node(KK&& key, DD&& data);

        void delete_node(Node*);
        void delete_node_v2(Node*);

        Node* minimum(Node* x) const;
        Node* maximum(Node* x) const;

        void transplant(Node * x, Node * y);

        template <typename ChildA, typename ChildB >
        void generic_fixed_delete(Node*&, ChildA, ChildB);

        template <typename ChildA, typename ChildB>
        void generic_fixed_add(Node*&, ChildA, ChildB);

        template <typename ChildA, typename ChildB >
        Node* generic_rotate(Node*, ChildA, ChildB);

        template<typename Accion>
        void recur_in_order_walk(Node*, Accion) const;

        template<typename Accion>
        void iter_in_order_walk(Node*, Accion) const;


        template<typename Accion>
        void stack_in_order_walk(Node*, Accion) const;

        template <typename KK, typename DD>
        bool generic_add(KK&&, DD&&);

        void destroy_tree(Node*);

        bool is_left_child(Node* x) const { return x == x->p->left;}

        bool is_rigth_child(Node* x)const { return x == x->p->rigth;}

        static Node*& left(Node* x) { return x->left;};

        static Node*& rigth(Node* x) { return x->rigth;};

        //Test    
        int blackH(Node*, bool& isRedBlack) const;
        bool assertPropery3(Node*) const;

    };

    template<typename K, typename D, typename Func>
    bool RBTree<K, D, Func>::empty() const 
    {
        return root == nil;
    }

    template<typename K, typename D, typename Func>
    RBTree<K, D, Func>::~RBTree() 
    {
        destroy_tree(root);
        delete nil;
    }

    template<typename K, typename D, typename Func>
    void RBTree<K, D, Func>::destroy_tree(Node* node) 
    {
        if (node == nil) return;

        destroy_tree(node->left);
        destroy_tree(node->rigth);
        delete node;
    }

    template<typename K, typename D, typename Func>
    RBTree<K, D, Func>::RBTree(Func pcmp)
    : cmp(pcmp), nil(new Node {D(), K(), false, nullptr, nullptr, nullptr}) 
    {
        root = nil;
    }

    template<typename K, typename D, typename Func>
    RBTree<K, D, Func>::RBTree() : RBTree(Func()) {}

    template<typename K, typename D, typename Func>
    unsigned RBTree<K, D, Func>::cardinality() const 
    {
        return size;
    }

    template<typename K, typename D, typename Func>
    template <typename ChildA, typename ChildB >
    typename RBTree<K, D, Func>::Node*  
    RBTree<K, D, Func>::generic_rotate(Node* x, ChildA childA, ChildB childB) 
    {
        Node *y = childB(x);
        childB(x) = childA(y);

        if (childA(y) != nil)
            childA(y)->p = x;

        if (x->p == nil)
            root = y;
        else if (x == childA(x->p))
            childA(x->p) = y;
        else
            childB(x->p) = y;

        y->p = x->p;
        childA(y) = x;
        x->p = y;

        return y;
    }

    template <typename K, typename D, typename Func>
    template<typename KK, typename DD>
    bool RBTree<K, D, Func>::generic_add(KK&& key, DD&& data) 
    {
        Node *newN = BST_add_recursive
        (
            std::forward<KK>(key),
            std::forward<DD>(data),
            nil, root
        );

        bool isAdded = newN != nullptr;

        if (isAdded) fixed_add(newN);

        return isAdded;
    }

    template <typename K, typename D, typename Func>
    bool RBTree<K, D, Func>::add(const K& key, const D& data) 
    {
        return generic_add(const_cast<K&> (key), const_cast<K&> (data));
    }

    template <typename K, typename D, typename Func>
    bool RBTree<K, D, Func>::add(K&& key, const D& data) 
    {
        return generic_add(std::move(key), const_cast<K&> (data));
    }

    template <typename K, typename D, typename Func>
    bool RBTree<K, D, Func>::add(const K& key, D&& data) 
    {
        return generic_add(const_cast<K&> (key), std::move(data));
    }

    template <typename K, typename D, typename Func>
    bool RBTree<K, D, Func>::add(K&& key, D&& data) 
    {
        return generic_add(std::move(key), std::move(data));
    }

    template <typename K, typename D, typename Func>
    std::pair<K, D> RBTree<K, D, Func>::get_min() const 
    {
        if (empty()) throw std::underflow_error("underflow");
        auto min = minimum(root);

        return std::pair<K, D>(min->key, min->data);

    }

    template <typename K, typename D, typename Func>
    std::pair<K, D> RBTree<K, D, Func>::get_max() const 
    {
        if (empty()) throw std::underflow_error("underflow");
        auto max = maximum(root);

        return std::pair<K, D>(max->key, max->data);
    }

    template <typename K, typename D, typename Func>
    bool RBTree<K, D, Func>::get(const K& key, D& result) const 
    {
        Node* resultN = find_node(key);

        bool found = resultN != nullptr;
        if (found) result = resultN->data;
        return found;
    }

    template <typename K, typename D, typename Func>
    template <typename KK, typename DD>
    typename RBTree<K, D, Func>::Node* 
    RBTree<K, D, Func>::BST_add_recursive(KK&& key, DD&& data, Node* p, Node*& node) 
    {
        if (node == nil) 
        {
            node = create_node(std::forward<KK>(key), std::forward<DD>(data));
            node->p = p;
            ++size;
            return node;
        }
        if (cmp(key, node->key))
            return BST_add_recursive(key, data, node, node->left);
        else if (cmp(node->key, key))
            return BST_add_recursive(key, data, node, node->rigth);

        return nullptr;
    }

    template <typename K, typename D, typename Func>
    template <typename KK, typename DD>
    typename RBTree<K, D, Func>::Node* RBTree<K, D, Func>::BST_add(KK&& key, DD&& data) 
    {
        Node *node = root, *p = nil;

        while (node != nil) 
        {
            p = node;
            if (cmp(node->key, key))
                node = node->rigth;
            else if (cmp(key, node->key))
                node = node->left;
            else return nullptr;
        }

        auto newN = create_node(std::forward<KK>(key), std::forward<DD>(data));
        if (root == nil)
            root = newN;
        else if (cmp(p->key, key))
            p->rigth = newN;
        else p->left = newN;
        newN->p = p;
        ++size;

        return newN;
    }

    template <typename K, typename D, typename Func>
    void RBTree<K, D, Func>::fixed_add(Node* x) 
    {
        while (x->p->isRed) 
        {
            if (is_left_child(x->p))
                generic_fixed_add(x, left, rigth);
            else
                generic_fixed_add(x, rigth, left);

        }
        root->isRed = false;
    }

    template <typename K, typename D, typename Func>
    template <typename KK, typename DD>
    typename RBTree<K, D, Func>::Node* RBTree<K, D, Func>::create_node(KK&& key, DD&& data) 
    {
        return new Node{std::forward<KK>(data), std::forward<DD>(key), true, nil, nil, nil};
    }

    template <typename K, typename D, typename Func>
    void RBTree<K, D, Func>::insert_move_up(Node *&x, Node* uncle) 
    {
        x->p->p->isRed = true;
        uncle->isRed = false;
        x->p->isRed = false;
        x = x->p->p;
    }

    template <typename K, typename D, typename Func>
    typename RBTree<K, D, Func>::Node* RBTree<K, D, Func>::minimum(Node* x) const 
    {
        while (x->left != nil)
            x = x->left;
        return x;
    }

    template <typename K, typename D, typename Func>
    typename RBTree<K, D, Func>::Node* RBTree<K, D, Func>::maximum(Node* x) const 
    {
        while (x->rigth != nil)
            x = x->rigth;
        return x;
    }

    template <typename K, typename D, typename Func>
    template<typename Accion>
    void RBTree<K, D, Func>::in_order_walk(Accion accion) const 
    {
        iter_in_order_walk(root, accion);
    }

    template <typename K, typename D, typename Func>
    template<typename Accion>
    void RBTree<K, D, Func>::recur_in_order_walk(Node* node, Accion accion) const 
    {
        if (node == nil) return;

        recur_in_order_walk(node->left, accion);
        accion(node->key, node->data);
        recur_in_order_walk(node->rigth, accion);
    }

    template <typename K, typename D, typename Func>
    template<typename Accion>
    void RBTree<K, D, Func>::iter_in_order_walk(Node* node, Accion accion) const 
    {
        Node* min = minimum(node);
        while (min != node->p) 
        {
            accion(min->key, min->data);
            if (min->rigth != nil)
                min = minimum(min->rigth);
            else 
            {
                while (min->p && is_rigth_child(min))
                    min = min->p;
                min = min->p;
            }
        }
    }

    template <typename K, typename D, typename Func>
    template<typename Accion>
    void RBTree<K, D, Func>::stack_in_order_walk(Node* n, Accion accion) const 
    {
        std::stack<Node*> s;

        s.push(nullptr);
        s.push(nullptr);

        while (!s.empty()) 
        {
            while (n != nil)
            {
                s.push(n->rigth);
                s.push(n);
                n = n->left;
            }
            if ((s.top() != nullptr))
                accion(s.top()->key, s.top()->data);

            s.pop();
            n = s.top();
            s.pop();
        }
    }

    template <typename K, typename D, typename Func>
    void RBTree<K, D, Func>::delete_node_v2(Node* z)
    {

        auto x = z->rigth, y = z;

        if (z->left == nil)
            transplant(z, x);
        else if (z->rigth == nil)
            transplant(z, x = z->left);
        else 
        {
            y = minimum(z->rigth);
            x = y->rigth;
            z->data = std::move(y->data);
            z->key = std::move(y->key);
            transplant(y, x);
        }
        if (!y->isRed) fixed_remove(x);

        --size;
        delete y;

    }

    template <typename K, typename D, typename Func>
    void RBTree<K, D, Func>::delete_node(Node* z)
    {
        auto x = z->rigth, y = z;
        bool originalColor = z->isRed;

        if (z->left == nil)
            transplant(z, x);
        else if (z->rigth == nil)
            transplant(z, x = z->left);
        else 
        {
            y = minimum(z->rigth);
            originalColor = y->isRed;
            x = y->rigth;

            if (y->p == z)
                x->p = y;
            else 
            {
                transplant(y, y->rigth);
                y->rigth = z->rigth;
                y->rigth->p = y;
            }

            transplant(z, y);
            y->left = z->left;
            y->left->p = y;
            y->isRed = z->isRed;

        }
        if (!originalColor) fixed_remove(x);

        --size;
        delete z;

    }

    template <typename K, typename D, typename Func>
    void RBTree<K, D, Func>::transplant(Node * x, Node * y) 
    {
        if (x->p == nil) root = y;
        else if (is_left_child(x))
            x->p->left = y;
        else x->p->rigth = y;
        y->p = x->p;
    }

    template <typename K, typename D, typename Func>
    void RBTree<K, D, Func>::fixed_remove(Node* x) 
    {

        while (x != root && !x->isRed) 
        {
            if (is_left_child(x))
                generic_fixed_delete(x, left, rigth);
            else
                generic_fixed_delete(x, rigth, left);
        }
        x->isRed = false;
    }

    template <typename K, typename D, typename Func>
    template <typename ChildA, typename ChildB >
    void RBTree<K, D, Func>::generic_fixed_delete(Node*& x, ChildA childA, ChildB childB)
    {
        Node *w = childB(x->p);
        if (w->isRed) 
        {
            std::swap(w->isRed, x->p->isRed);
            generic_rotate(x->p, childA, childB);
            w = childB(x->p);
        }

        if (!w->left->isRed && !w->rigth->isRed) 
        {
            w->isRed = true;
            x = x->p;
        } 
        else 
        {
            if (!childB(w)->isRed)
            {
                std::swap(w->isRed, childA(w)->isRed);
                w = generic_rotate(w, childB, childA);
            }
            w->isRed = x->p->isRed;
            x->p->isRed = false;
            childB(w)->isRed = false;
            generic_rotate(x->p, childA, childB);
            x = root;
        }
    }

    template <typename K, typename D, typename Func>
    typename RBTree<K, D, Func>::Node* RBTree<K, D, Func>::find_node(const K& key) const
    {
        Node *node = root;
        while (node != nil)
        {
            if (cmp(key, node->key))
                node = node->left;
            else if (cmp(node->key, key))
                node = node->rigth;
            else return node;
        }

        return node;
    }

    template <typename K, typename D, typename Func>
    bool RBTree<K, D, Func>::remove(const K& key, D& data)
    {
        auto node = find_node(key);
        bool exist = node != nil;
        if (exist)
        {
            data = node->data;
            delete_node_v2(node);
        }
        return exist;
    }

    template <typename K, typename D, typename Func>
    template <typename ChildA, typename ChildB >
    void RBTree<K, D, Func>::generic_fixed_add(Node*& x, ChildA childA, ChildB childB)
    {
        Node* uncle = childB(x->p->p);
        if (uncle->isRed)
            insert_move_up(x, uncle);
        else 
        {
            if (x == childB(x->p))
                generic_rotate(x = x->p, childA, childB);

            x->p->p->isRed = true;
            generic_rotate(x->p->p, childB, childA)->isRed = false;
        }
    }

    //test

    template <typename K, typename D, typename Func>
    bool RBTree<K, D, Func>::assertPropery3(Node *node) const
    {
        if (node == nil) return true;
        return !node->isRed || (node->left->isRed && node->rigth->isRed)
                && assertPropery3(node->left) && assertPropery3(node->rigth);
    }
    //test

    template<typename K, typename D, typename Func>
    int RBTree<K, D, Func>::blackH(Node* node, bool &isRedBlack) const
    {
        if (node == nil) return 1;

        auto left = blackH(node->left, isRedBlack);
        auto rigth = blackH(node->rigth, isRedBlack);

        isRedBlack = isRedBlack && left == rigth;

        return (node->isRed ? 0 : 1)
                +std::max(left, rigth);
    }

}

#endif /* RBTREE_H_ */

Friday, September 4, 2015

Problem 12-2 Radix trees



Answer

A radix tree has the following invariants:

1.     L being the set of keys  in the left subtree of F and R being the set of keys in the right subtree of F we have for all F:  ∀ x∀ yR x < y
2.      For all F we have that parent(F) < F

The fist and second invariant holds because of the fist and second 
part of the definition  for lexicographically less than respectively.
Also because of transitivity we know that each key is less than all its descendants.
So knowing this 2 invariant we know we can do a pre-order walk. 
But is pre-oder walk Θ(n)? 

We know that for a tree of x nodes pre-order  walk runs in  Θ(x).
 The key of a node is like a trail to get were he is and each bit is a turn.
In each turn there is a node  but the paths may partially overlap for each key. 


Knowing this we can say that x - 1  ≤ n  and therefore the runtime is  Θ(n)